无锡市科学技术情报研究所

首 页
研究所概况
新闻中心
情报研究分析中心
对外科技交流中心
文献资料
信息查新
科技统计中心
  首页    对外科技交流中心   对外科技交流合作
Boston和MIT研究人员利用脑电信号实时控制机器人
Boston和MIT研究人员利用脑电信号实时控制机器人
 
加入时间:2020-3-25 15:34:43 访问量:9
 

    利用大脑信号来控制机器人是人机交互中的一个非常有意思和有意义的研究。尽管根据目前的技术,捕捉和识别这些信号是一个相当大的挑战,但最近的研究表明,错误相关电位(ErrP)信号是由大脑在观察或犯错时产生的。如果即使是在有限的情况下也可以利用这个信号来促进人-机器人的控制,它将使人-机器人协作的新应用成为可能。例如,人类可以远程监控工厂里的机器人,当机器人犯了错误时,不需要输入命令或按下按钮,就可以立即“停止”。
    可靠地检测这种与错误相关的电位,可以通过与协作机器人交互或观察过程中在大脑中自然产生的信号来实现通信。这可能会减轻普通脑机接口(BCI)系统经常需要的大量用户培训、额外的认知负担或持续的视觉刺激。
    由于使用脑电图(EEG)从受试者的大脑活动中快速提取这些信号的固有困难,因此涉及与错误相关的电位的研究通常是在受控的环境中进行,并用于模拟或开环任务。然而,机器人应用需要在真实环境中的闭环场景。因此,研究人员在该篇文献中探讨了EEG测量的ErrP信号在实时闭环机器人任务中的适用性。
    波士顿大学和MIT研究人员开发了一个基于在线识别与错误相关电位的人-机器人协作的反馈系统,值得一提的是,一个名为RethinkRobotics Baxter的机器人在被人类观察的同时进行对象选择。对操作员的脑电图信号进行实时采集和解码;如果检测到ErrP信号,机器人会立即纠正其轨迹。图1描述了排序任务期间的系统操作,这是对象选择任务的简单扩展。
    这些实验得到的一个重要结果是观察和分析了由于人的积极参与而产生的在线闭环实验中的交互误差相关电位,即次级误差(secondary ErrP)。当机器人不能很好地服从人类的反馈时,脑电图信号的实时错误分类就会自然地产生。这些次级错误通常比与初始错误相关的潜在错误(初级错误)更容易分类。因此,该信号可以改善系统性能,并极大地帮助基于EEG的机器人任务闭环控制器的开发;该论文对这一目标进行了初步的离线分析。

无锡市科学技术情报研究所(无锡市对外科技交流中心 无锡市530计划项目促进中心 无锡市集成电路设计创业服务中心) 版权所有
地址:无锡市梁溪区学前街168号科技大厦  电话:0510-82711797   
苏ICP备12072601号